On an Undemonstrated Theorem of the Disquisitiones Arithmetics
ثبت نشده
چکیده
than n — 1, while the average number of elements in all the substitutions of G is n — 1. This is impossible, as the substitutions of G which are not also in H cannot contain more than n — 1 elements. Hence H is transitive. Since the average number of elements in the substitutions of G is the same as that in the substitutions of H, the substitutions of G which are not found in H must all be of the (n — ï)th degree. The theorems of §§ 75, 76 of Getto's work * are proved by the preceding paragraph. It may be well to add in regard to the given § 75 that G may be transitive while the corresponding subgroup of G is intransitive. The following group | is an instance :
منابع مشابه
On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملUnique Factorization Theorem and Formal Concept Analysis
In the theory of generalised colourings of graphs, the Unique Factorization Theorem (UFT) for additive induced-hereditary properties of graphs provides an analogy of the well-known Fundamental Theorem of Arithmetics. The purpose of this paper is to present a new, less complicated, proof of this theorem that is based on Formal Concept Analysis. The method of the proof can be successfully applied...
متن کاملMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007